Abstract

Experiments in laboratory populations of Drosophila melanogaster have shown a negative genetic correlation between early-life fecundity on the one hand and starvation resistance and longevity on the other. Selection for late-life reproductive success resulted in long-lived populations that had increased starvation resistance but diminished early-life fecundity relative to short-lived controls. This pattern of differentiation proved, however, to be unstable. When assayed in a standard high-fecundity environment, the relative early fecundity of the long- and short-lived stocks reversed over a decade. That is, the long-lived populations came to have greater relative early-life fecundity, late-life fecundity, longevity and starvation resistance. Nevertheless, when these populations were assayed in other assay environments, the original trade-off was still present. We investigated the genetic structure of the short- and long-lived populations, to ask whether the inconstancy of the trade-off, as inferred from among population comparisons, is reflected in the pattern of genetic correlations within populations. For this purpose, lines from each of the short- and long-lived populations that had been selected for starvation resistance were compared with unselected controls. The direct and correlated responses of these starvation selected populations suggest that (1) the original genetic trade-off was still present in the ancestral short- and long-lived populations, even when it was no longer apparent from their comparison; (2) the trade-off was present in both assay environments; and (3) selectable genotype × environment variation exists for early fecundity. We suggest that a failure of the pattern of differentiation among populations to reflect the pattern of genetic correlations, if common in natural populations, will prevent the reliable inference of genetic trade-offs from comparisons of most natural populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call