Abstract

We develop a fully automated QA process to compare the image quality of all kV CBCT protocols on a Halcyon linac with ring gantry design, and evaluate image quality stability over a 10-month period. A total of 19 imaging scan and reconstruction protocols were characterized with measurement on a newly released QUART phantom. A set of image analysis algorithms were developed and integrated into an automated analysis suite to derive key image quality metrics, including HU value accuracy on density inserts, HU uniformity using the background plate, high contrast resolution with the modulation transfer function (MTF) from the edge profiles, low contrast resolution using the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), slice thickness with the air gap modules, and geometric accuracy with the diameter of the phantom. Image quality data over 10 months was tracked and analyzed to evaluate the stability of the Halcyon kV imaging system. The HU accuracy over all 19 protocols is within tolerance (±50HU). The maximum uniformity deviation is 12.2 HU. The SNR and CNR, depending on the protocol selected, range from 18.5–911.9 and 1.9–102.8, respectively. A much-improved SNR and CNR were observed for iterative reconstruction (iCBCT) modes and protocols designed for large subjects over low dose and fast scanning modes. The Head and Image Gently protocols have the greatest high contrast resolution with MTF10% over 1 lp/mm and MTF50% over 0.6 lp/mm. The iCBCT mode slightly improved the MTF10% and MTF50% compared to the Feldkamp-Davis-Kress approach. The slice thickness (maximum error of 0.31 mm) and geometry metrics (maximum error of 0.7 mm) are all within tolerance (±0.5 mm for slice thickness and ±1 mm for geometry metrics). The long-term study over 10-month showed no significant drift for all key image quality metrics, which indicated the kV CBCT image quality is stable over time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.