Abstract

Background: Living at high altitude or with chronic hypoxia implies functional and morphological changes in the right ventricle and pulmonary vasculature with a 10% prevalence of high-altitude pulmonary hypertension (HAPH). The implications of working intermittently (day shifts) at high altitude (hypobaric hypoxia) over the long term are still not well-defined. The aim of this study was to evaluate the right cardiac circuit status along with potentially contributory metabolic variables and distinctive responses after long exposure to the latter condition.Methods: A cross-sectional study of 120 healthy miners working at an altitude of 4,400–4,800 m for over 5 years in 7-day commuting shifts was designed. Echocardiography was performed on day 2 at sea level. Additionally, biomedical and biochemical variables, Lake Louise scores (LLSs), sleep disturbances and physiological variables were measured at altitude and at sea level.Results: The population was 41.8 ± 0.7 years old, with an average of 14 ± 0.5 (range 5–29) years spent at altitude. Most subjects still suffered from mild to moderate symptoms of acute mountain sickness (mild was an LLS of 3–5 points, including cephalea; moderate was LLS of 6–10 points) (38.3%) at the end of day 1 of the shift. Echocardiography showed a 23% mean pulmonary artery pressure (mPAP) >25 mmHg, 9% HAPH (≥30 mmHg), 85% mild increase in right ventricle wall thickness (≥5 mm), 64% mild right ventricle dilation, low pulmonary vascular resistance (PVR) and fairly good ventricle performance. Asymmetric dimethylarginine (ADMA) (OR 8.84 (1.18–66.39); p < 0.05) and insulin (OR: 1.11 (1.02–1.20); p < 0.05) were associated with elevated mPAP and were defined as a cut-off. Interestingly, the correspondence analysis identified association patterns of several other variables (metabolic, labor, and biomedical) with higher mPAP.Conclusions: Working intermittently at high altitude involves a distinctive pattern. The most relevant and novel characteristics are a greater prevalence of elevated mPAP and HAPH than previously reported at chronic intermittent hypobaric hypoxia (CIHH), which is accompanied by subsequent morphological characteristics. These findings are associated with cardiometabolic factors (insulin and ADMA). However, the functional repercussions seem to be minor or negligible. This research contributes to our understanding and surveillance of this unique model of chronic intermittent high-altitude exposure.

Highlights

  • The right cardiac circuit of highaltitude populations living in chronic hypobaric hypoxia (CH) undergoes major changes

  • When the same procedure was performed with Mean pulmonary artery pressure (mPAP) ≥ 30, the results were similar. This cross-sectional study, in long-term chronic intermittent hypobaric hypoxia (CIHH) working shifts at high altitude, has the following main findings: (1) a distinctive and unique pattern of physiological responses was determined, wherein a third of subjects showed moderate Acute Mountain Sickness (AMS) persistence; (2) high proportions of elevated mPAP (26.1%) and high-altitude pulmonary hypertension (HAPH) (9.2%) were found by echocardiography; and (3) specific cardiometabolic variables appeared to be associated factors, with insulin and asymmetric dimethylarginine (ADMA) clearly associated with elevated mPAP

  • The current results show a significant elevation of ADMA at altitude, and for the first time, they show a correlation of ADMA with both mPAP and right ventricle wall thickness, suggesting a pivotal pathophysiological role of this pathway in the development of pulmonary vascular dysfunction at high altitude

Read more

Summary

Introduction

The right cardiac circuit (rather than the left) of highaltitude populations living in chronic hypobaric hypoxia (CH) undergoes major changes. These changes are characterized by elevated pulmonary artery pressure (PAP), right ventricle hypertrophy, and heart and pulmonary vessel remodeling. Some individuals develop high-altitude pulmonary hypertension (HAPH). Living at high altitude or with chronic hypoxia implies functional and morphological changes in the right ventricle and pulmonary vasculature with a 10% prevalence of high-altitude pulmonary hypertension (HAPH). The implications of working intermittently (day shifts) at high altitude (hypobaric hypoxia) over the long term are still not well-defined. The aim of this study was to evaluate the right cardiac circuit status along with potentially contributory metabolic variables and distinctive responses after long exposure to the latter condition

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call