Abstract

In face processing tasks, prior presentation of internal facial features, when compared with external ones, facilitates the recognition of subsequently displayed familiar faces. In a previous ERP study (Olivares & Iglesias, 2010) we found a visibly larger N400-like effect when identity mismatch familiar faces were preceded by internal features, as compared to prior presentation of external ones. In the present study we contrasted the processing of familiar and unfamiliar faces in the face-feature matching task to assess whether the so-called “internal features advantage” relies mainly on the use of stored face-identity-related information or if it might operate independently from stimulus familiarity. Our participants (N = 24) achieved better performance with internal features as primes and, significantly, with familiar faces. Importantly, ERPs elicited by identity mismatch complete faces displayed a negativity around 300–600 msec which was clearly enhanced for familiar faces primed by internal features when compared with the other experimental conditions. Source reconstruction showed incremented activity elicited by familiar stimuli in both posterior (ventral occipitotemporal) and more anterior (parahippocampal (ParaHIP) and orbitofrontal) brain regions. The activity elicited by unfamiliar stimuli was, in general, located in more posterior regions. Our findings suggest that the activation of multiple neural codes is required for optimal individuation in face-feature matching and that a cortical network related to long-term information for face-identity processing seems to support the internal feature effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call