Abstract

Human mesenchymal stem cells (hMSCs) transplantation has attracted considerable interest for the treatment of pulmonary injury. Noninvasive and long-term tracking of hMSCs after transplantation in vivo, which is important for our understanding of the stem cell therapy, still remains a big challenge. Herein, we report on the development of a novel gold nanoparticle-based nanotracer to track by CT imaging the transplantation of hMSCs in vivo. Gold nanoparticles (AuNPs) were synthesized on bovine serum albumin (BSA) via an in situ growth method and modified with a poly-l-lysine (PLL) layer, yielding Au@BSA@PLL nanotracers with enhanced biocompatibility and intracellular uptake. Au@BSA@PLL nanotracers were explored for in vitro and in vivo tracking of hMSCs with computer tomography (CT). Our results showed that the endocytosis of Au@BSA@PLL by hMSCs was as high as ∼293 pg per cell. Meanwhile, the nanotracers had a negligible influence on the viability, proliferation, and osteogenic and adipogenic differentiation of the labeled hMSCs. Using a pulmonary fibrosis injury mouse model induced by bleomycin, the labeled hMSCs could be tracked by CT imaging up to 23 d after transplanted in vivo, suggesting the feasibility of Au@BSA@PLL as a potential cellular nanotracer for noninvasive and long-term CT tracking of hMSCs in lung tissue repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call