Abstract

Understanding how municipal solid waste (MSW) classification influences the physiochemical properties and incineration emission characteristics of MSW is imperative for sustainable waste management. To investigate how long-term changes in the composition and physical properties of MSW resulting from MSW classification affect the emissions of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and multiple flue gas pollutants, a five-year experiment (2018–2022) was conducted in a full-scale MSW incinerator in Shenzhen City, China. After MSW classification, the food waste in MSW was substantially reduced while the paper, textile, and wood components were notably increased. MSW classification also remarkably decreased the water and chlorine contents of MSW while concomitantly increasing the wet-based calorific value, sulfur content, and nitrogen content. Consequently, the PCDD/Fs emissions declined from 106.7 ng I-TEQ/t MSW in 2018 to 26.0 ng I-TEQ/t MSW in 2022. Moreover, a process-tracing experiment demonstrated noticeable decreases in PCDD/F synthesis in the post-combustion area, with mass-reduction efficiencies of 23.6 %–95.4 %. In a correlation analysis, the PCDD/F emissions were significantly positively correlated with food waste, water content, and chlorine and negatively correlated with the wet-based calorific value and nitrogen content. Furthermore, MSW classification reduced the emissions of conventional flue gas pollutants (SO2, CO, and HCl) and multiple heavy metals (total sum of Sb, As, Pb, Cr, Co, Cu, Mn, and Ni). In summary, the long-term study demonstrated that MSW classification can feasibly separate incombustible waste, improve combustion quality, and reduce pollutant emissions from sources. These findings offer practical guidance for promoting MSW classification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call