Abstract

We previously communicated that long-term hypoxia (LTH) resulted in a selective reduction in plasma epinephrine following acute stress in fetal sheep. The present study tested the hypothesis that LTH selectively reduces adrenomedullary expression of phenylethanolamine-N-methyltransferase (PNMT), the rate-limiting enzyme for epinephrine synthesis. We also examined the effect of LTH on adrenomedullary nicotinic, muscarinic, and glucocorticoid receptor (GR) expression. Ewes were maintained at high altitude (3,820 m) from 30 to 138 days gestation (dGA); adrenomedullary tissue was collected from LTH and age-matched, normoxic control fetuses at 139-141 dGA. Contrary to our hypothesis, in addition to PNMT, adrenomedullary expression (mRNA, protein) of tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) were reduced in the LTH fetus. Immunocytochemistry indicated that TH and DBH expression was lower throughout the medulla, while PNMT appeared to reflect a reduction in PNMT-expressing cells. Nicotinic receptor alpha 1, 2, 3, 5, 6, 7, beta 1, 2, and 4 subunits were expressed in the medulla of LTH and control fetuses. Messenger RNA for alpha 1 and 7 and beta 1 and 2 subunits was lower in LTH fetuses. Muscarinic receptors M1, M2, and M3 as well as the GR were also expressed, and no differences were noted between groups. In summary, LTH in fetal sheep has a profound effect on expression of key enzymes mediating adrenomedullary catecholamine synthesis. Further, LTH impacts nicotinic receptor subunit expression potentially altering cholinergic neurotransmission within the medulla. These findings have important implications regarding fetal cardiovascular and metabolic responses to stress in the LTH fetus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.