Abstract

Following anterior cruciate ligament injury, a mechanically stable tissue replacement is required for knee stability and to avoid subsequent damages. Tissue engineering of the anterior cruciate ligament demands a biocompatible scaffold with a controllable degradation profile to provide mechanical support for 3 to 6 months. It has been argued that embroidered textile scaffolds made of polylactic acid and poly(lactic-co-ɛ-caprolactone) fibres are a promising approach for the ligament tissue engineering with an adapted functionalization and cell seeding strategy. Therefore, the hydrolytic degradation behaviour of embroidered scaffolds made of polylactic acid and a combination of polylactic acid and poly(lactic-co-ɛ-caprolactone) fibres was investigated under physiological conditions for 168 days. The changes in the mechanical behaviour, the molecular weights as well as the surface structures were analysed. Sufficient mechanical properties comparable to native anterior cruciate ligament tissue could be demonstrated for scaffolds made of polylactic acid fibres after 6 months under hydrolysis. These results clarify the potential of using embroidered scaffolds for ligament tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.