Abstract

Our laboratory has investigated the fabrication of a tissue-engineered intestine using biodegradable polymer scaffolds. Previously we reported that isolated intestinal epithelial organoid units on biodegradable polymer scaffolds formed cysts and the neointestine was successfully anastomosed to the native small bowel. The purpose of this study was to observe the development of tissue-engineered intestine after anastomosis and to demonstrate the effect of the anastomosis over a 9-month period. Microporous biodegradable polymer tubes were created from polyglycolic acid. Intestinal epithelial organoid units were harvested from neonatal Lewis rats and seeded onto the polymers, which were implanted into the abdominal cavity of adult male Lewis rats followed by 75% small bowel resection (n=24). Three weeks after implantation, the unit/polymer constructs were anastomosed to the native jejunum in a side-to-side fashion. The anastomosed tissue-engineered intestine was measured by laparotomy 10, 24, and 36 weeks after the implantation (n= 14). During the laparotomy, all rats with an obstruction in their anastomosis were killed and excluded from the statistical analysis. Another five rats were also killed at 10 and 36 weeks for histological and morphometric studies. All analyzed rats survived this study and significantly increased their body weight by 36 weeks. Obstruction of the anastomosis was observed in one rat at 24 weeks and in two rats at 36 weeks; however, the anastomosis was patent in the other 11 rats by 36 weeks. The tissue-engineered intestine of these 11 rats increased in length and diameter at 10, 24, and 36 weeks after anastomosis; there were statistically significant differences between each time point except between the length of 10 and 24 weeks (P<0.016 by Wilcoxon signed rank test). Histologically the inner surface of the tissue-engineered intestine was lined with well-developed neomucosa at 10 and 36 weeks; however, there were small bare areas lacking neomucosa in the tissue-engineered intestine at 36 weeks. Morphometric analysis demonstrated no significant differences in villus number, villus height, and surface length of the neomucosa at 10 and 36 weeks. Anastomosis between tissue-engineered intestine and native small bowel resulted in no complications after operation and maintained a high patency rate for up to 36 weeks. The tissue-engineered intestine increased in size and was lined with well-developed neomucosa for the duration of the study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.