Abstract

Amphotropic and ecotropic packaging cell lines were used to obtain high titers (greater than 10(6) colony forming units/ml) of retroviruses encoding human argininosuccinate synthetase, and these viruses were used to transduce murine bone marrow cells using cocultivation in vitro. The bone marrow cells were transplanted into lethally irradiated recipient mice, and argininosuccinate synthetase activity was measured in peripheral blood. Transduction with amphotropic retrovirus resulted in short-term expression for a period of 1-8 weeks, and no animals expressed the human gene after 25 weeks. Over 60% of the animals transplanted with cells transduced with ecotropic retrovirus expressed the human gene 44 weeks post-transplant, although the level of expression varied over a wide range. Analysis of the DNA from transplanted animals demonstrated the presence of the human sequence in expressing animals, and S1 nuclease analysis of RNA confirmed the presence of the human RNA transcripts. Analysis of granulocyte/macrophage (GM) colonies derived from the bone marrow of transplanted, expressing animals revealed a correlation between the level of expression of the transduced gene with the percentage of GM colonies carrying the human gene sequence. These data demonstrate the feasibility of obtaining long-term expression of genes introduced into bone marrow cells using retroviral vectors and the feasibility of obtaining expression of a gene not normally expressed in bone marrow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.