Abstract

Previous studies have assessed limited cognitive domains with relatively short exposure to air pollutants, and studies in Asia are limited. This study aims to explore the association between long-term exposure to air pollutants and cognition in community-dwelling older adults. This four-year prospective cohort study recruited 605 older adults at baseline (2011-2013) and 360 participants remained at four-year follow-up. Global and domain-specific cognition were assessed biennially. Data on PM2.5 (particulate matter≤2.5μm diameter, 2005-2015), PM10 (1993-2015), and nitrogen dioxide (NO2, 1993-2015) were obtained from Taiwan Environmental Protection Administration (TEPA). Bayesian Maximum Entropy was utilized to estimate the spatiotemporal distribution of levels of these pollutants. Exposure to high-level PM2.5 (>29.98μg/m3) was associated with an increased risk of global cognitive impairment (adjusted odds ratio = 4.56; β= -0.60). High-level PMcoarse exposure (>26.50μg/m3) was associated with poor verbal fluency (β= -0.19). High-level PM10 exposure (>51.20μg/m3) was associated with poor executive function (β= -0.24). Medium-level NO2 exposure (>28.62 ppb) was associated with better verbal fluency (β= 0.12). Co-exposure to high concentrations of PM2.5, PMcoarse or PM10 and high concentration of NO2 were associated with poor verbal fluency (PM2.5 and NO2: β= -0.17; PMcoarse and NO2: β= -0.23; PM10 and NO2: β= -0.21) and poor executive function (PM10 and NO2: β= -0.16). These associations became more evident in women, apolipoprotein ɛ4 non-carriers, and those with education > 12 years. Long-term exposure to PM2.5 (higher than TEPA guidelines), PM10 (lower than TEPA guidelines) or co-exposure to PMx and NO2 were associated with poor global, verbal fluency, and executive function over 4 years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call