Abstract

To evaluate in long-term periods the destruction of periodontal tissues and bacterial colonization induced by oral gavage with periodontopathogens or ligature experimental periodontal disease models. Forty-eight C57BL/6J mice were divided into four groups: group C: negative control; group L: ligature; group G-Pg: oral gavage with Porphyromonas gingivalis; and group G-PgFn: oral gavage with Porphyromonas gingivalis associated with Fusobacterium nucleatum. Mice were infected by oral gavage five times in 2-day intervals. After 45 and 60days, animals were sacrificed and the immune-inflammatory response in the periodontal tissue was assessed by stereometric analysis. The alveolar bone loss was evaluated by live microcomputed tomography and histometric analysis. qPCR was used to confirm the bacterial colonization in all the groups. Data were analyzed using the Kruskal-Wallis, Wilcoxon, and ANOVA tests, at 5% of significance level. Ligature model induced inflammation and bone resorption characterized by increased number of inflammatory cells and decreased number of fibroblasts, followed by advanced alveolar bone loss at 45 and 60days (p < 0.05). Bacterial colonization in groups G-Pg and G-PgFn was confirmed by qPCR but inflammation and bone resorption were not observed (p < 0.05). The ligature model but not the oral gavage models were effective to induce inflammation and bone loss in long-term periods. Pg colonization was observed in all models of experimental periodontal disease induction, independent of tissue alterations. These mice models of periodontitis validates, compliments, and enhances published PD models that utilize ligature or oral gavage and supports the importance of a successful colonization of a susceptible host, a bacterial invasion into vulnerable tissue, and host-bacterial interactions that lead to tissue destruction. The ligature model was an effective approach to induce inflammation and bone loss similar to human periodontitis, but the oral gavage models were not efficient in inducing periodontal inflammation and tissue destruction in the conditions studied. Ligature models can provide a basis for future interventional studies that contribute to the understanding of the disease pathogenesis and the complex host response to microbial challenge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.