Abstract

Combustion of fossil fuels has contributed to many environmental problems including acid deposition. The Clean Air Act (CAA) was created to reduce ecological problems by cutting emissions of sulfur and nitrogen. Reduced emissions and rainfall concentrations of acidic ions have been observed since the enactment of the CAA, but soils continue to receive some acid inputs. Many soils sensitive to acid deposition are found to have low pH, a loss of base cations, and a shift in the mineral phase controlling the activity of Al3+ and/or SO4 2−. If inputs continue, soil may be depleted of base cations and saturated with Al and could cause low forest productivity. Soil samples and soil solutions from pan lysimeters were taken on ridge-tops in the Daniel Boone National Forest to evaluate potential impacts of acid deposition recently and in the future. Sample results were compared to historical data from identical locations. Physicochemical characteristics of the soils revealed that sites were very low in base saturation and pH and high in exchangeable acidity, illustrating change since previously sampled. Soil solution data indicated that sites periodically received high acid inputs leading to saturation of Al in soils and the formation of Al-hydroxy-sulfate minerals. Given these conditions, long-term changes in soil chemistry from acid deposition are acknowledged.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call