Abstract

Populus hybrids are increasingly planted in multifunctional bioenergy buffers bordering crop fields. However, such small agroforestry systems are vulnerable to damage caused by overabundant deer populations. We measured after 8 years the effects of white-tailed deer (Odocoileus virginianus), genotype and planting stock type on tree growth and ecosystem services provision (biomass production; energy, nutrient and carbon storage; and phytoaccumulation of soil nitrate and phosphorus) in 15-m wide buffers located downslopes of hayfields in southern Québec (Canada). Two deer protection treatments (fenced and unfenced), two genotypes (P. deltoides × P. nigra, genotype D×N-3570 and P. maximowiczii × P. balsamifera, genotype M×B-915311) and two stock types (bare-root stocks: ±1.8 m in height and whips: 2.5 m in height) were studied. In unfenced plots, deer heavily browsed poplars (increase in the height of the first branch by 59 cm), repeatedly rubbed tree bark (36% of trees with rubs for genotype D×N-3570, and 59% for genotype M×B-915311), slightly decreased survival (by 2.9%), which reduced tree-level and stand-level productivity. Proportion of trees with rubs, first branch height and survival were correlated (p < 0.001) with woody biomass yields. Fenced poplars increased wood volume, biomass and energetic content by 20–21%, and C, N and P stocks in aboveground biomass by 13–20%. Higher soil phosphorus bioavailability was also found in unfenced plots. Genotype D×N-3570, which allocates less biomass to branches, grows its first branches farther from the ground and rapidly develops a rough and thick bark, was the least affected by deer, despite its high palatability. Genotype M×B-915311, which had higher biomass allocation to branches, a smooth and thin bark, but low palatability, was the most affected by deer. Soils in plots of genotype M×B-915311 had the lowest macronutrients availability, except for nitrate. Biomass feedstock quality (i.e. low nutrient concentrations and high heating value of woody biomass) was highest for genotype M×B-915311. In both fenced and unfenced plots, whips were more productive than bare-root stocks, especially for genotype D×N-3570. Optimizing ecosystem services provision in bioenergy buffers can be achieved by fencing, and by genotype and stock type selection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.