Abstract

Organic matter accumulation and increased microbial activity under no-till can affect the dynamics of some essential micronutrients for plants. The main purpose of this work was to study the long-term effect of tillage on the availability of Fe, Mn, Cu, and Zn in a calcareous soil from Southern Spain. To this end, nutrient availability in surface soil (0–5-cm depth) subjected to a long-term tillage experiment (21 years) was evaluated via pot experiments and chemical tests involving DTPA extraction (as availability index) and sequential chemical fractionation of Mn and Fe. Soil organic matter (SOM) content and microbial activity (estimated by the β-glucosidase method) were found to be significantly higher under no-till (NT) than under conventional (CT) or minimum tillage (MT). Also, DTPA extractable Mn, Cu, and Zn, and citrate–bicarbonate extractable Mn (Mn cb), were all higher under NT than under CT and MT, the differences being related to the increase in SOM as revealed by the correlation of Mn, Cu, and Zn extractable with DTPA and SOM ( r = 0.87, P < 0.001; r = 0.8, P < 0.01, and r = 0.86, P < 0.001, respectively), and that between Mn cb and SOM ( r = 0.87, P < 0.001). However, the increased extractability resulted in no increased concentrations of these nutrients in plants. Moreover, the Mn concentration in the last expanded leaf was significantly lower with NT than with CT, which can be ascribed at least partly to an increased microbial activity under NT as revealed by the negative correlation between Mn in plants and β-glucosidase activity in soil ( r = −0.71, P < 0.01). The Fe concentration in plants was not affected by soil tillage; also, it was only related to citrate–ascorbate extractable Fe ( r = 0.69, P < 0.05), which exposes the contribution of poorly crystalline Fe oxides in soil to Fe nutrition in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.