Abstract

BackgroundThe three Tiao-Bu Fei-Shen (Bufei Jianpi, Bufei Yishen, Yiqi Zishen) granules have been confirmed for their beneficial clinical efficacy in chronic obstructive pulmonary disease (COPD) patients on reducing frequency and duration of acute exacerbation, improving syndromes, pulmonary function and exercise capacity. But the short- or long-term mechanism of them is not fully clear. Nuclear factor (NF)-κB/transforming growth factor (TGF)-β1/smad2 signaling pathway is involved in the progress of inflammation and remodeling in chronic obstructive pulmonary disease COPD. This study aimed to explore the long-term effects mechanism of Tiao-Bu Fei-Shen granules by regulating NF-κB/TGF-β/Smads signaling in rats with COPD.MethodsSprague Dawley rats were randomized into control, model, Bufei Jianpi, Bufei Yishen, Yiqi Zishen and aminophylline groups. COPD rats, induced by cigarette smoke and bacterial infections exposures, were administrated intragastricly by normal saline, Bufei Jianpi, Bufei Yishen, Yiqi Zishen granules or aminophylline from week 9 through 20, respectively. At week 20 and 32, lung tissues were harvested. Immunohistochemistry was used to detect interleukin (IL)-1β and tumor necrosis factor (TNF)-α, quantitative real-time polymerase chain reaction (qRT-PCR) was used for TGF-β1 and Smad2 mRNA analysis, western blotting was used to determine the phosphorylation of NF-κB (p-NF-κB) and IκBα (p-IκBα).ResultsCOPD rats had marked airway injury, such as chronic airway inflammation and remodeling, emphysema, which were improved in the three traditional Chinese medicines (TCM)-treated animals. The levels of IL-1β, TNF-α, p-NF-κB, p-IκBα, TGF-β1 and Smad2 were significantly higher in COPD rats than in controls, while they were dramatically reduced in the three TCM- and aminophylline-treated groups. At the meantime, all these endpoints were significantly lower in three TCM-treated groups than in aminophylline group, especially in Bufei Jianpi and Bufei Yishen groups. Compared to week 20, all endpoints decreased significantly in three TCM groups at week 32.ConclusionThe three Tiao-Bu Fei-Shen therapies can reduce pulmonary inflammation and remodeling in COPD and have significant long-term effects. NF-κB/TGF-β1/smad2 signaling might be involved in the mechanism.

Highlights

  • The three Tiao-Bu Fei-Shen (Bufei Jianpi, Bufei Yishen, Yiqi Zishen) granules have been confirmed for their beneficial clinical efficacy in chronic obstructive pulmonary disease (COPD) patients on reducing frequency and duration of acute exacerbation, improving syndromes, pulmonary function and exercise capacity

  • We aimed to explore the longterm effects of the three Tiao-Bu Fei-Shen granules on airway inflammation and remodeling by regulating NFκB/transforming growth factor (TGF)-β1/Smads2 signaling in COPD rats

  • Mortality During the 32-week-period, two rats died in the model, Bufei Jianpi, Bufei Yishen, Yiqi Zishen and aminophylline groups respectively due to pulmonary abscess

Read more

Summary

Introduction

The three Tiao-Bu Fei-Shen (Bufei Jianpi, Bufei Yishen, Yiqi Zishen) granules have been confirmed for their beneficial clinical efficacy in chronic obstructive pulmonary disease (COPD) patients on reducing frequency and duration of acute exacerbation, improving syndromes, pulmonary function and exercise capacity. Nuclear factor (NF)-κB/transforming growth factor (TGF)-β1/smad signaling pathway is involved in the progress of inflammation and remodeling in chronic obstructive pulmonary disease COPD. This study aimed to explore the long-term effects mechanism of Tiao-Bu Fei-Shen granules by regulating NF-κB/TGF-β/Smads signaling in rats with COPD. Chronic obstructive pulmonary disease (COPD), a prevalent smoking-related disease for which no diseasealtering therapies currently exist, is characterized by persistent airflow limitation and progressive pathology that resulted from recurrent inflammation and remodeling in small airway. These pathological damages occur throughout the course of COPD [1]. The effects of NF-κB/TGF-β/Smads pathways are as follows: 1) to promote the secretion of inflammatory cytokines and chemokines, augment inflammatory response; 2) to induce fibroblast cell differentiation into highly synthetic myofibroblasts and arguably transdifferentiation of epithelial cells into fibroblasts, produce more cytokines to aggravate the lung injury; 3) to increase the production of collagen fibers, elastic fibers and reticular fibers, promote them deposit in the cell membrance, which may lead to airway wall thickening and aggravate airflow limitation; 4) to increase the secretion of the extracellular matrix components (such as bronchopulmonary tissue fibronectin, collagen type III and I glycoprotein, etc.) and result in airway plasticity decreasing and remodeling [3,4,5,6]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call