Abstract

Monte Carlo simulation was used to assess the long-term effects of truncation selection within small populations using indices (I=ωf+m) combining mid-parent [f=(a i+a d)/2] and Mendelian-sampling (m=a-f) evaluations provided by an animal model BLUP (a=f+m). Phenotypic values of panmictic populations were generated for 30 discrete generations. Assuming a purely additive polygenic model, heritability (h 2) values were 0.10, 0.25 or 0.50. Two population sizes were considered: five males and 25 females selected out of 50 candidates of each sex (small populations, S) and 50 males and 250 females selected out of 500 candidates in each sex (large populations, L). Selection was carried out on the index defined above with ω = 1 (animal model BLUP), ω=1/2, or ω=0 (selection on within-family deviations). Mass selection was also considered. Selection based on the animal model BLUP (ω=1) maximized the cumulative genetic gain in L populations. In S populations, selection using ω = 1/2 and mass selection were more efficient than selection under an animal model (+ 3 to + 7% and + 1 to + 4% respectively, depending on h (2)). Selection on within-family deviations always led to the lowest gains. In most cases, the variance of response to selection between replicates did not depend on the selection method. The within-replicate genetic variance and the average coefficient of inbreeding (F) were highly affected by selection with ω=1 or 1/2, especially in populations of size S. As expected, selection based on within-family deviations was less detrimental in that respect. The number of copies of founder neutral genes at a separate locus, and the probability vector of origin of the genes in reference to the founder animals, were also observed in addition to F values. The conclusion was that selection procedures placing less emphasis on family information might be interesting alternatives to selection based on animal model BLUP, especially for small populations with long-term selection objectives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.