Abstract
In male mammals that provide care for their offspring, fatherhood can lead to changes in behavioral, morphological, and physiological traits, some of which might constitute trade-offs. However, relatively little is known about these changes, especially across multiple reproductive bouts, which are expected to magnify differences between fathers and nonreproductive males. We evaluated consequences of fatherhood in the monogamous, biparental California mouse (Peromsycus californicus) across seven consecutive reproductive bouts. We compared breeding adult males (housed with sham-ovariectomized females) with two control groups: nonbreeding males (housed with ovariectomized females treated with estrogen and progesterone to induce estrous behavior) and virgin males (housed with untreated ovariectomized females). At five time points (before pairing, early postpartum of the first litter, late postpartum of the second litter, early postpartum of the sixth litter, and late postpartum of the seventh litter or comparable time points for nonbreeding and virgin males), we measured males' body composition, hematocrit, predatory aggression, resting metabolic rate, maximal oxygen consumption (), grip strength, and sprint speed. We also weighed organs at the final time point. We predicted that fathers would have lower relative body fat and lower performance abilities compared with control groups and that these effects would become more pronounced with increasing parity. Contrary to predictions, breeding and control males differed in surprisingly few measures, and the number and magnitude of differences did not increase with parity. Thus, our expectations regarding trade-offs were not met. As reported in studies of single reproductive events, these results suggest that fatherhood has few costs in this species when housed under standard laboratory conditions, even across multiple reproductive bouts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.