Abstract

Chlorophyll-a plays an essential biochemical role in the eutrophication process, and is widely considered an important water quality indicator for assessing human activity’s effects on aquatic ecosystems. Herein, 20 years of moderate resolution imaging spectroradiometer (MODIS) data were applied to investigate the spatiotemporal patterns and trends of chlorophyll-a concentration (Chla) in the eutrophic Lake Taihu, based on a new empirical model. The validated results suggested that our developed model presented appreciable performance in estimating Chla, with a root mean square error (MAPE) of 12.95 μg/L and mean absolute percentage error (RMSE) of 29.98%. Long-term MODIS observations suggested that the Chla of Lake Taihu experienced an overall increasing trend and significant spatiotemporal heterogeneity during 2002–2021. A driving factor analysis indicated that precipitation and air temperature had a significant impact on the monthly dynamics of Chla, while chemical fertilizer consumption, municipal wastewater, industrial sewage, precipitation, and air temperature were important driving factors and together explained more than 81% of the long-term dynamics of Chla. This study provides a 20 year recorded dataset of Chla for inland waters, offering new insights for future precise eutrophication control and efficient water resource management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.