Abstract

A 20‐yr study of a metapopulation of the American pika revealed a regional decline in occupancy in one part of a large network of habitat patches. We analyze the possible causes of this decline using a spatially realistic metapopulation model, the incidence function model. The pika metapopulation is the best‐known mammalian example of a classical metapopulation with significant population turnover, and it satisfies closely the assumptions of the incidence function model, which was parameterized with data on patch occupancy. The model‐predicted incidences of patch occupancy are consistent with observed incidences, and the model predicts well the observed turnover rate between four metapopulation censuses. According to model predictions, the part of the metapopulation where the decline has been observed is relatively unstable and prone to large oscillations in patch occupancy, whereas the other part of the metapopulation is predicted to be persistent. These results demonstrate how extinction‐colonization dynamics may produce spatially correlated patterns of patch occupancy without any spatially correlated processes in local dynamics or extinction rate. The unstable part of the metapopulation gives an empirical example of multiple quasi equilibria in metapopulation dynamics. Phenomena similar to those observed here may cause fluctuations in species' range limits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.