Abstract

Recent observation from the Compton Gamma-Ray Observatory shows that gamma-ray emission after a solar flare can last for as long as 8 hours. There is also evidence that electrons and protons are accelerated only during the impulsive phase of the flare and are subsequently mirror trapped in coronal magnetic loops. This poses the following dilemma: if the magnetic field lines in the loop are simple plane arches, the protons will drift across the cross section of the loop in seconds to minutes, rather than hours. To solve the dilemma, we use guiding center theory to show that long-term containment of energetic protons in a coronal loop is possible if magnetic field lines have enough twist. We also find that in the trapped region of the loop, the twist angle of field lines between the mirror points of a bounce orbit is approximately 2 pi.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.