Abstract

BackgroundOver the past 30–40 years, various carbon implant materials have become more interesting, because they are well accepted by the biological environment. The traditional carbon-based polymers give rise to many complications. The polymer complication may be eliminated through carbon fibres bound by pyrocarbon (carbon/carbon). The aim of this study is to present the long-term clinical results of carbon/carbon implants, and the results of the scanning electron microscope and energy dispersive spectrometer investigation of an implant retrieved from the human body after 8 years.MethodsMandibular reconstruction (8–10 years ago) was performed with pure (99.99 %) carbon implants in 16 patients (10 malignant tumours, 4 large cystic lesions and 2 augmentative processes). The long-term effect of the human body on the carbon/carbon implant was investigated by comparing the structure, the surface morphology and the composition of an implant retrieved after 8 years to a sterilized, but not implanted one.ResultsOf the 16 patients, the implants had to be removed earlier in 5 patients because of the defect that arose on the oral mucosa above the carbon plates. During the long-term follow-up, plate fracture, loosening of the screws, infection or inflammations around the carbon/carbon implants were not observed. The thickness of the carbon fibres constituting the implants did not change during the 8-year period, the surface of the implant retrieved was covered with a thin surface layer not present on the unimplanted implant. The composition of this layer is identical to the composition of the underlying carbon fibres. Residual soft tissue penetrating the bulk material between the carbon fibre bunches was found on the retrieved implant indicating the importance of the surface morphology in tissue growth and adhering implants.ConclusionsThe surface morphology and the structure were not changed after 8 years. The two main components of the implant retrieved from the human body are still carbon and oxygen, but the amount of oxygen is 3–4 times higher than on the surface of the reference implant, which can be attributed to the oxidative effect of the human body, consequently in the integration and biocompatibility of the implant. The clinical conclusion is that if the soft part cover is appropriate, the carbon implants are cosmetically and functionally more suitable than titanium plates.

Highlights

  • Over the past 30–40 years, various carbon implant materials have become more interesting, because they are well accepted by the biological environment

  • During recent years, various carbon implant materials have become of considerable interest in view of the fact that they are well tolerated by the biological environment [1]

  • Experimental methods applied The surface morphology of the implants was investigated with a Philips XL30 scanning electron microscope (SEM), and a Bruker QUANTAX 200 energy dispersive spectrometer (EDS measurements) with an XFlash 5010 detector attached to an FEI Inspect S50 SEM was used for the measurement of the average surface composition

Read more

Summary

Introduction

Over the past 30–40 years, various carbon implant materials have become more interesting, because they are well accepted by the biological environment. The traditional carbon-based polymers (hip and knee prostheses and heart valves) give rise to certain complications because of the polymer matrix [2], such as material fatigue and fractures. These complications may be eliminated through the use of carbon fibres bound by pyrocarbon (carbon/carbon, C/C) [3]. The mechanical properties of C/C composites are very close to those of human bones [4]. This is a major advantage as compared with different metals, and especially titanium implant materials. The screws employed to fix the metal to the bone impose a much greater load on the metal-bone connection than in the case of a C/C and bone [5, 6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.