Abstract

A secondary standard silicon photodiode matched with a V-lambda filter was calibrated against primary standard, self-calibrated inversion layer silicon photodiodes, to achieve a high accuracy photometer, according to the new definition of the canadela (the photometric base unit). The measured several percent/year specular spectral reflectance change of the windowless primary standard photodiodes was eliminated by their repeated self-calibration. This self-calibration also eliminated the measured several tenth of a percent/year spectral response change of the secondary standard silicon photodiode. The secondary standard detector could be a nonunity quantum efficiency light detector. The spectral response calibration of the V-lambda matched detector of medium spectral mismatch (f(1)= 3.0%) against the absolute spectral responses of three self-calibrated photodiodes resulted in a standard deviation of 0.17% in luminous flux (lumen) calibration. Also illuminance (lux) and light intensity (candela) calibrations were derived from the above primary photometric calibration. It is shown that the V-lambda matched photometer with the above spectral calibration can be used for accurate photometric measurements for all kinds of light sources of known spectral power distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call