Abstract
1. The dense system of horizontal connections that arise and course within the striate cortex are thought to inform single cells about stimuli arising in disparate points in visual space and to modulate responses evoked from within the receptive field. To learn whether or not the strength of the horizontal connections could vary over the long term, and if such changes could affect the integration of vertical, interlaminar inputs, we have recorded intracellularly from the superficial layers in slices of the adult cat's visual cortex. 2. The monosynaptic EPSP evoked by stimulating horizontal fibres showed long-term facilitation in twelve of the twenty cells that were conditioned by repetitively pairing synaptic responses with depolarizing pulses of current; the maximum increase observed was 200%. Strong inhibition present in the postsynaptic response usually indicated that facilitation would not occur. 3. In instances where horizontal input evoked both mono- and polysynaptic EPSPs, both early and late events showed facilitation, with the most dramatic enhancement contributed by the polysynaptic components. 4. For the twenty-eight cells whose responses to stimulation of interlaminar as well as horizontal pathways were assessed, all were found to receive non-overlapping inputs from each source. Conditioning produced long-term changes in the strength of the interlaminar inputs. 5. Changes in synaptic strength were usually confined to the conditioned pathway, though in four out of twenty-six times we observed heterosynaptic facilitation of polysynaptic EPSPs. 6. The conditioning protocol led to lasting depression rather than facilitation in three out of eleven instances; the reduction was only observed in the multisynaptic components. 7. We suggest that the synaptic changes observed here may be related to certain dynamic changes in receptive field properties that have been characterized in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.