Abstract
Invasion of exotic forest pests and pathogens is a serious environmental problem for many forests throughout the world, and has been especially damaging to forests of eastern North America. We studied the impacts of an exotic pest/pathogen complex, the beech bark disease (BBD), in the Catskill Mountains of New York State, USA. In this region, BBD has caused a decline in the basal area of American beech (Fagus grandifolia Ehrh.) over the last 60 years and this decline has been accompanied by an increase in the basal area of sugar maple (Acer saccharum Marsh.). We studied the impacts of the BBD on carbon (C) and nitrogen (N) cycling using a series of stands that represented a sequence of disease impact and beech replacement by sugar maple. Our study showed that these long-term changes in tree species composition can lead to important changes in C and N cycling in the ecosystem, including an increase in litter decomposition, a decrease in soil C:N ratio, and an increase in extractable nitrate in the soil and nitrate in soil solution. Rates of potential net N mineralization and nitrification did not change across the BBD sequence, but the fraction of mineralized N that was nitrified increased significantly. Many of the observed changes in ecosystem function are larger in magnitude than those attributed to climate change or air pollution, suggesting that the impacts of invasive pests and pathogens on tree species composition could be one of the most important factors driving changes in C and N cycling in these forests in the coming decades.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.