Abstract
We investigated the long-term (up to 90 days) consequences of soman intoxication in mice on weight, motor performances (grip strength, rotarod) and mnemonic cognitive processes (T-maze, Morris water maze test). First, a relative weight loss of 20%, measured 3 days after intoxication, was evidenced as a threshold beyond which neuropathological damage was observed in the hippocampus. Animals were then distributed into either low weight loss (LWL) or high weight loss (HWL) groups according to the relative 20% weight loss threshold. Compared to controls, both groups of poisoned mice quickly exhibited a decrease in their motor performance subsequent to an acute soman toxicity phase. Then, total motor recovery occurred for the LWL group. Comparatively, HWL mice showed only transient recovery prior to a second decrease phase due to soman-induced delayed toxicity. One month after intoxication, mnemonic cognitive performances of the LWL group were similar to controls while the HWL group did not exhibit any learning skill. Three months after poisoning, compared to controls, the LWL group showed similar mnemonic performances in the maze test but a mild deficit in the Morris water maze task. At the same time, learning skills slightly recovered in the HWL group. Mnemonic cognitive data are discussed in relation to the neuropathology, neurogenesis and sprouting occurring in the hippocampus of soman-intoxicated animals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.