Abstract

Single crystals of 99.999% and 99.9999% pure aluminum were annealed at high elevated temperatures (0.98Tm) for relatively long times of up to one year, the longest in the literature. Remarkably, the dislocation density remains relatively constant at a value of about 109m−2 over a period of one year. The stability suggests some sort of “frustration” limit. This has implications towards the so-called “Harper-Dorn creep” that generally occurs at fairly high temperatures (e.g. > 0.90Tm) and very low stresses. It is possible that ordinary five-power-law creep occurs within the tradition Harper-Dorn regime with very low initial dislocation densities in aluminum. Higher initial dislocation densities, such as with this annealing study, may lead to Harper-Dorn (Newtonian) creep.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.