Abstract

The differential equations of motion of a charged particle in a strong non-uniform magnetic field have the magnetic moment as an adiabatic invariant. This quantity is nearly conserved over long time scales covering arbitrary negative powers of the small parameter, which is inversely proportional to the strength of the magnetic field. The numerical discretisation is studied for a variational integrator that is an analogue for charged-particle dynamics of the Stormer–Verlet method. This numerical integrator is shown to yield near-conservation of a modified magnetic moment and a modified energy over similarly long times. The proofs for both the continuous and the discretised equations use modulated Fourier expansions with state-dependent frequencies and eigenvectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.