Abstract

More than 10% of births are preterm, and the long-term consequences on sensory and semantic processing of non-linguistic information remain poorly understood. 17 very preterm-born children (born at < 33 weeks gestational age) and 15 full-term controls were tested at 10 years old with an auditory object recognition task, while 64-channel auditory evoked potentials (AEPs) were recorded. Sounds consisted of living (animal and human vocalizations) and manmade objects (e.g. household objects, instruments, and tools). Despite similar recognition behavior, AEPs strikingly differed between full-term and preterm children. Starting at 50ms post-stimulus onset, AEPs from preterm children differed topographically from their full-term counterparts. Over the 108-224ms post-stimulus period, full-term children showed stronger AEPs in response to living objects, whereas preterm born children showed the reverse pattern; i.e. stronger AEPs in response to manmade objects. Differential brain activity between semantic categories could reliably classify children according to their preterm status. Moreover, this opposing pattern of differential responses to semantic categories of sounds was also observed in source estimations within a network of occipital, temporal and frontal regions. This study highlights how early life experience in terms of preterm birth shapes sensory and object processing later on in life.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.