Abstract

Dynamic scene classification has been extensively studied in computer vision due to its widespread applications. The key to dynamic scene classification lies in jointly characterizing spatial appearance and temporal dynamics to achieve informative representation, which remains an outstanding task in the literature. In this paper, we propose a unified framework to extract spatial and temporal features for dynamic scene representation. More specifically, we deploy two variants of deep convolutional neural networks to encode spatial appearance and short-term dynamics into short-term deep features (STDF). Based on STDF, we propose using the autoregressive moving average model to extract long-term frequency features (LTFF). By combining STDF and LTFF, we establish the long-short-term feature (LSTF) representations of dynamic scenes. The LSTF characterizes both spatial and temporal patterns of dynamic scenes for comprehensive and information representation that enables more accurate classification. Extensive experiments on three-dynamic scene classification benchmarks have shown that the proposed LSTF achieves high performance and substantially surpasses the state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.