Abstract

In the matter of Portfolio selection, we consider an extended version of the Mean-Absolute Deviation (MAD) model, which includes discrete asset choice constraints (threshold and cardinality constraints) and one is allowed to sell assets short if it leads to a better risk-return tradeoff. Cardinality constraints limit the number of assets in the optimal portfolio and threshold constraints limit the amount of capital to be invested in (or sold short from) each asset and prevent very small investments in (or short selling from) any asset. The problem is formulated as a mixed 0---1 programming problem, which is known to be NP-hard. Attempting to use DC (Difference of Convex functions) programming and DCA (DC Algorithms), an efficient approach in non-convex programming framework, we reformulate the problem in terms of a DC program, and investigate a DCA scheme to solve it. Some computational results carried out on benchmark data sets show that DCA has a better performance in comparison to the standard solver IBM CPLEX.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.