Abstract
The grand canonical Monte Carlo technique is used to calculate the solvation force and interfacial tension in a simple Lennard-Jones fluid confined between two solid walls. Emphasis is placed on large wall-to-wall separations, where the oscillations of density and solvation force due to layering effects have decayed. Despite the short range of the fluid–fluid and fluid–wall interaction potentials used, the solvation force shows an unsuspectedly long-ranged behavior, remaining quite perceptible up to a separation of 100 molecular diameters. It is also found that the sign of the solvation force at large separations is not uniquely determined by the sign of the interfacial tension: The walls that are “philic” with respect to the constrained fluid may well exhibit both repulsive and attractive solvation forces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.