Abstract

AbstractWe explore how the rheology of dense granular flows is affected by the presence of sidewalls. The study is based on discrete element method simulations of plane-shear flows between two rough walls, prescribing both the normal stress and the shear rate. Results confirm previous observations for different systems: large layers near the walls develop where the local viscosity is not constant, but decreases when approaching the walls. The size of these layers can reach several dozen grain diameters, and is found to increase when the flow decelerates, as a power law of the inertial number. Two non-local models are found to adequately explain such features, namely the kinetic elasto-plastic fluidity (KEP) model and the eddy viscosity model (EV). The analysis of the internal kinematics further shows that the vorticity and its associated length scale may be a key component of these non-local behaviours.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.