Abstract

We show, both theoretically and experimentally, that long-range surface plasmons (LRSPs) are supported by asymmetric structure, consisting of a thin silver/gold bilayer metallic film sandwiched between a magnesium fluoride (i.e., MgF<sub>2</sub>) buffer layer and a sensing medium (water). The geometrical parameters of the structure are optimized to yield efficient excitation of LRSPs by using transfer matrix method based on Fresnel reflection. The excitation of LRSPs was performed by using a custom-made automated optical setup based on angular interrogation with the precision of 0.01°. We demonstrate that the bimetallic asymmetric structure achieves better minimum reflectivity resolution than monometallic (gold) asymmetric structure. Finally, figures of merit are compared for bimetallic, monometallic, and conventional SPR structures, and we found that the bimetallic asymmetric structure provides a higher figure of merit; e.g., more than double for monometallic LRSP configuration and 8 times as compared to the conventional surface plasmon resonance sensor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.