Abstract

In this paper, we consider the final state problem for the nonlinear Schrödinger equation with a homogeneous nonlinearity of the critical order which is not necessarily a polynomial. In [SIAM J. Math. Anal. 50 (2018), pp. 3251–3270], the first and second authors consider one- and two-dimensional cases and give a sufficient condition on the nonlinearity so that the corresponding equation admits a solution that behaves like a free solution with or without a logarithmic phase correction. The present paper is devoted to the study of the three-dimensional case, in which it is required that a solution converge to a given asymptotic profile in a faster rate than in the lower dimensional cases. To obtain the necessary convergence rate, we employ the end-point Strichartz estimate and modify a time-dependent regularizing operator, introduced in the aforementioned article. Moreover, we present a candidate for the second asymptotic profile of the solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.