Abstract

The problem of a diluted two-dimensional quantum antiferromagnet on a square lattice is studied using spin-wave theory. The influence of impurities on static and dynamic properties is investigated and a good agreement with experiments and Monte Carlo data is found. The hydrodynamic description of spin waves breaks down at characteristic wavelengths Lambda greater than exp(const/x), x being an impurity concentration, while the order parameter is free from anomalies. We argue that this dichotomy originates from strong scattering of the low-energy excitations in two dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.