Abstract

The kinetics of electron transfer (ET) between cytochrome c and a gold (111) electrode through self-assembled monolayers of alkanethiols with terminal carboxylic acid groups, COOH(CH 2 ) n SH, have been studied for n=2–11 using an ac potential-modulated UV–VIS reflectance spectroscopic technique (electroreflectance spectroscopy, ER). For 9⩽n⩽11, the standard ET rate constant, k app , depends exponentially on the chain lengths and the exponential decay factor is 1.09 per methylene group; for n<9, however, k app deviates from the exponential plot. The ET reaction through short-chain alkanethiol monolayers is controlled by the preceding chemical reaction. The rate-controlling step is very likely to be the reorganization of cytochrome c to the favourable conformation for the ET reaction. The ET reaction rate constant from cytochrome c in the favourable conformation to the electrode surface obeys Marcus theory for long-range ET. The ET reaction through long-chain alkanethiol monolayers is controlled by the ET rate through alkanethiols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call