Abstract

Using high-intensity (110-200 GW/cm/sup 2/) 250-fs 211-nm laser pulses and a point-by-point technique, the efficiency of long-period grating inscription in H/sub 2/-loaded standard telecom Corning SMF-28 and H/sub 2/-free photosensitive B-codoped Fibercore fibers was studied and compared with those at other existing recording methods (low-intensity 157-nm, 193-nm, 248-nm or high-intensity 264-nm fabrications). It was shown that at high-intensity 211-nm laser inscription, two-quantum photoreactions are responsible for long-period fiber grating (LPFG) formation, which results in a significant photosensitivity enhancement in comparison with conventional low-intensity 248-nm exposure (by 45 times for SMF-28 fiber). It was found that the grating strength in the case of SMF-28 fiber, irradiated with high-intensity 211-nm pulses, reaches 28 dB, which is the highest value among all known photochemical approaches. The thermal studies of the recorded gratings were also conducted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call