Abstract

A long-lived triplet charge separated state (3CS state lifetime: 0.56 μs) was observed in a compact electron donor-acceptor dyad with electron donor phenothiazine (PTZ) and acceptor anthraquinone (AQ) directly connected by a single C-N bond (AQ-PTZ). The 1CS state energy (2.0 eV in cyclohexane) is lower than those of the 3AQ (2.7 eV) or the 3PTZ state (2.6 eV). By oxidation of the PTZ unit, thus increasing of the 1CS state energy (2.7 eV in cyclohexane), thermally activated delayed fluorescence (TADF) was observed [τ = 17.7 ns (99.9%)/1.5 μs (0.1%)]. Time-resolved electron paramagnetic resonance (TREPR) spectra confirm the electron spin multiplicity of the 3CS state, and the zero-field-splitting (ZFS) parameters |D| and |E| are 48.2 mT and 11.2 mT, respectively. These results are useful for design of compact electron donor-acceptor dyads to access the long-lived 3CS state and study the TADF mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.