Abstract

The dephasing influence of a dissipative environment reduces linear superpositions of macroscopically distinct quantum states (sometimes also called Schrödinger cat states) usually almost immediately to a statistical mixture. This process is called decoherence. Couplings to the environment with a certain symmetry can lead to slow decoherence. In this Letter we show that the collective coupling of a large number of two-level atoms to an electromagnetic field mode in a cavity that leads to the phenomena of superradiance has such a symmetry, at least approximately. We construct superpositions of macroscopically distinct quantum states decohering only on a classical time scale and propose an experiment in which the extraordinarily slow decoherence should be observable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.