Abstract

We demonstrate the existence of long-lived, large-amplitude eccentric modes in massive, annular particle disks in orbit about a central mass. The lopsided modes we have found precess slowly in the prograde direction at a rate that increases with disk mass and decreases with the amplitude of the distortion. The lopsidedness generally survives for as long as we run the calculations and may last indefinitely; we found no significant decay in over 700 disk-particle orbits in one case. These strongly nonlinear modes are readily created using a number of different perturbing rules, but we find no evidence for linear instabilities in unperturbed disks. Our results suggest that Tremaine's eccentric disk model for the nucleus of M31 may be viable, but none of our models matches all aspects of the observational data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.