Abstract
Long-lived, colour-triplet scalars are a generic prediction of unnatural, or split, composite Higgs models where the spontaneous global-symmetry breaking scale $f \gtrsim 10$ TeV and an unbroken $SU(5)$ symmetry is preserved. Since the triplet scalars are pseudo Nambu-Goldstone bosons they are split from the much heavier composite-sector resonances and are the lightest exotic, coloured states. This makes them ideal to search for at colliders. Due to discrete symmetries the triplet scalar decays via a dimension-six term and given the large suppression scale $f$ is often metastable. We show that existing searches for collider-stable R-hadrons from Run-I at the LHC forbid a triplet scalar mass below 845 GeV, whereas with $300\,\mathrm{fb}^{-1}$ at 13 TeV triplet scalar masses up to 1.4 TeV can be discovered. For shorter lifetimes displaced-vertex searches provide a discovery reach of up to 1.8 TeV. In addition we present exclusion and discovery reaches of future hadron colliders as well as indirect limits that arise from modifications of the Higgs couplings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.