Abstract

Solar energy has the potential of providing the world with clean and storable energy. In principle, solar fuels can be generated by light absorption followed by primary charge separation and secondary charge separation to reaction centres. However this comes with several challenges, including the need for long-lived charge separation and accumulation of several charges. This Feature Article focuses on how to achieve long-lived charge separation in dye sensitized semiconductor assemblies and the way towards multi-electron transfer through conduction band mediation, aiming at solar fuel generation. Herein, we discuss various examples of how the charge separated lifetime can be extended and potential ways of achieving one or multiple electron transfer in these assemblies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.