Abstract
Our current understanding of human physiology and activities is largely derived from sparse and discrete individual clinical measurements. To achieve precise, proactive, and effective health management of an individual, longitudinal, and dense tracking of personal physiomes and activities is required, which is only feasible by utilizing wearable biosensors. As a pilot study, we implemented a cloud computing infrastructure to integrate wearable sensors, mobile computing, digital signal processing, and machine learning to improve early detection of seizure onsets in children. We recruited 99 children diagnosed with epilepsy and longitudinally tracked them at single-second resolution using a wearable wristband, and prospectively acquired more than one billion data points. This unique dataset offered us an opportunity to quantify physiological dynamics (e.g., heart rate, stress response) across age groups and to identify physiological irregularities upon epilepsy onset. The high-dimensional personal physiome and activity profiles displayed a clustering pattern anchored by patient age groups. These signatory patterns included strong age and sex-specific effects on varying circadian rhythms and stress responses across major childhood developmental stages. For each patient, we further compared the physiological and activity profiles associated with seizure onsets with the personal baseline and developed a machine learning framework to accurately capture these onset moments. The performance of this framework was further replicated in another independent patient cohort. We next referenced our predictions with the electroencephalogram (EEG) signals on selected patients and demonstrated that our approach could detect subtle seizures not recognized by humans and could detect seizures prior to clinical onset. Our work demonstrated the feasibility of a real-time mobile infrastructure in a clinical setting, which has the potential to be valuable in caring for epileptic patients. Extension of such a system has the potential to be leveraged as a health management device or longitudinal phenotyping tool in clinical cohort studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.