Abstract

PurposeMixed phenotype acute leukemia (MPAL) is a rare subtype of acute leukemia and its progressive genomic basis over time remains unclear. We aimed to investigate the longitudinal genomic evolution of MPAL from diagnosis to relapse. MethodsWe performed whole genome sequencing (WGS) on bone marrow (BM) samples obtained at the four stages of this disease in a male patient with Philadelphia chromosome positive (Ph+) MPAL, including primary, complete cytogenetic remission (CCR), complete molecular remission (CMR), and relapse stage during the 3 year follow-up period. Results156 single-nucleotide variants (SNVs) and indels were detected, which exhibited distinctive evolutionary behaviors. Seventeen mutations disappeared quickly upon DCTER treatment and never came back. Seven mutations, although disappeared initially, reoccurred with the withdrawal of TKI treatment. Notably, ten mutations emerged in spite of the active DCTER chemotherapy. Moreover, copy number loss played critical roles in monitoring MPAL progression, displaying 7, 0, 0, and 383 losses at the stages of primary, CCR, CMR, and relapse respectively. ConclusionThis longitudinal genomic investigation of the Ph+ MPAL patient established one MPAL evolution model in which the primary tumor acquired additional variations leading to tumor relapse. Moreover, the event of copy number loss remained a valuable hallmark in the progression of MPAL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call