Abstract

This paper evaluates the longitudinal wave speed through a plate in which its two opposing sides are elastically restrained in the width direction, taking into consideration the material auxeticity and strain as well as changes to the density and cross-sectional area. Apart from the known role of Young’s modulus and density, the present results reveal that the wave speed can be enhanced by increasing the width elastic restraint. In the case of high elastic restraint, the speed of both tensile and compressive waves can be minimized by selecting plate materials with Poisson’s ratio of low magnitude. In the case of low elastic restraint, the speed of tensile and compressive waves can be greatly reduced by selecting plate materials with large positive and large negative Poisson’s ratio, respectively. For the special case of negligible strain, the longitudinal wave speed reduces to the elementary wave speed in prismatic rods and in plates of infinite width when the width elastic restraint stiffness approaches zero and infinity, respectively. The obtained results not only avail more parameters for adjusting the longitudinal waves in plates, but also identify the differing methods of effectively controlling the wave speed between tensile and compressive waves when the strain magnitude is non-negligible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.