Abstract
The stress distribution, subject to a constant pressure over the entire surface of a penny-shaped crack is discussed by Sneddon(4). Recently, Robertson (3) has considered the diffraction of a plane longitudinal wave by a penny-shaped crack on a semi-infinite elastic solid. In the present analysis, the propagation of longitudinal wave in an infinite isotropic elastic plate with a penny-shaped crack in the middle has been investigated. The plane longitudinal wave is moving in the positive direction of z-azis and is impinging on the surface of the penny-shaped crack. The dual integral equation technique of Noble(l) is utilized to solve the mixed boundary-value problem. The analysis closely follows the method used in the author's previous paper (2). The vertical displacement is analysed numerically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.