Abstract

Research on longitudinal discrepancies in local ionospheric variability, especially in equatorial and low-latitude regions, is a focal point of interest for the space weather modeling community. The ionosphere over these regions is influenced by complex electrodynamics, wind, and temperature dynamics that can seriously impact dynamic technological systems such as satellite tracking and positioning, satellite radio communication, and navigation control systems. Here, we researched the longitudinal variability in the ionospheric total electron content (TEC) by analyzing observed global positioning system (GPS)-derived TEC values along with those extracted from the most reliable global ionospheric maps (GIMs) and the International Reference Ionosphere (IRI-2016) model at selected stations in the vicinity of the magnetic equator along the American, African, and Asian longitude sectors. The period of study covered the descending (2016–2017) and deep solar minimum (2018–2019) years in the 24th solar cycle. Apart from the decreasing trend of the TEC from the descending to deep solar minimum period irrespective of season and longitude sector, the results showed a relatively higher magnitude of TEC in the African longitude than the other two longitude sectors. Despite evident overestimation and underestimations of TEC in both models, GIM predictions generally looked better in terms of observed variation patterns, especially in the African longitude. The study also highlights the seasonal and semiannual effects of longitudinal variations in TEC, manifesting in local time offsets and some peculiar anomalies, which seemed to be different from previously reported results, especially during the solar minimum years at the three longitude sectors. The insignificant effects of longitudinal variations on the equinoctial asymmetry are attributed to the diverse electron density distribution and ionospheric morphology at the three longitude sectors that will prompt further investigations in the future. The outcomes from this study may augment the past efforts of scientists to understand the seasonal effects of the longitudinal variations in TEC, thereby complementing the improvements of ionospheric representations in global ionosphere models and maps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call