Abstract

AbstractThe Global‐scale Observations of the Limb and Disk (GOLD) mission, launched in 2018, aims to investigate the low latitude ionosphere from a geostationary orbit at 47.5°W. It uses two identical spectrometers measuring the wavelength range from 134.0 to 163.0 nm. The configuration of the Earth's magnetic field shows that the largest offset between geographic and geomagnetic equators occurs in the longitude sectors sampled by GOLD. In an attempt to investigate the longitude dependence of the occurrence rate and time of onset of plasma bubbles, or plasma depletions, GOLD data were separated in three sectors: 65°‐55°W, 50°‐40°W, and 10°W–0°. Observations of the nighttime emissions in 135.6 nm on November 2018 and March 2019 show plasma depletions occurring very frequently at these longitudes. The growth rate of the Rayleigh‐Taylor instability was computed at these longitudes under similar low solar activity conditions, assuming an empirical model of upward plasma drifts. The time and value of the maximum growth rates obtained cannot always explain the observations. On average, the observed occurrence rate of plasma depletions is high, with a maximum of 73% (observed during November 2018 at ∼45°W). Most of the depletions observed in November at 45°W and 60°W occur within 1 h after sunset. When compared with the November 2018 observations, depletions in March 2019 occur at later times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.