Abstract
AimsTo identify longitudinal trajectories of glycemic control among adults with newly diagnosed diabetes, overall and by diabetes type. MethodsWe analyzed claims data from OptumLabs® Data Warehouse for 119,952 adults newly diagnosed diabetes between 2005 and 2018. We applied a novel Mixed Effects Machine Learning model to identify longitudinal trajectories of hemoglobin A1c (HbA1c) over 3 years of follow-up and used multinomial regression to characterize factors associated with each trajectory. ResultsThe study population was comprised of 119,952 adults with newly diagnosed diabetes, including 696 (0.58%) with type 1 diabetes. Among patients with type 1 diabetes, 52.6% were diagnosed at very high HbA1c, partially improved, but never achieved control; 32.5% were diagnosed at low HbA1c and deteriorated over time; and 14.9% had stable low HbA1c. Among patients with type 2 diabetes, 67.7% had stable low HbA1c, 14.4% were diagnosed at very high HbA1c, partially improved, but never achieved control; 10.0% were diagnosed at moderately high HbA1c and deteriorated over time; and 4.9% were diagnosed at moderately high HbA1c and improved over time. ConclusionsClaims data identified distinct longitudinal trajectories of HbA1c after diabetes diagnosis, which can be used to anticipate challenges and individualize care plans to improve glycemic control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.